2.2. Systems of Linear Equations

An m x n system of linear equations in variables xy, Xo, ..., Xn iS
a list of m equations of the form

aitXxy + apXe + -+ + aipXn = b
anXy + apXe + - + apXn = b
amiXt + amXe + -+ + amXn = bm

Any point (x, X2, . . ., Xp) Which satisfies all the equations in the
system is called a solution of the system.
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2.2. Systems of Linear Equations

We can represent such a system as AX = b

ajn a2 -+ an X1 b

a1 ax» - ap X2 b,

am ame amn Xn bm
A X b

Or, more succintly, we can write the augmented matrix (A | b):

a1 &2 -+ amn| b
a1 ap -+ ap| bo
am ame -+ amn| bm
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2.2. Systems of Linear Equations

Write the system of linear equations

3x + y — 3z =
X 4+ y - z
X — z =

I
- on
——

as an augmented matrix.
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2.2. Systems of Linear Equations

Write the system of linear equations

3x + y — 3z =
X 4+ y - z

X - Z

I
- on
——

as an augmented matrix.
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2.3. Elementary Row Operations

Let A € Mnn(R). The following operations are called
elementary row operations (EROs) on the matrix A:
@ multiplying a row of A by a nonzero scalar. (If the i row of
Ais replaced by « times itself, the notation will be
OzR,' — R,'.)
@ interchanging two rows of A. (If the /" and /" rows of A are
interchanged, the notation is R; <+ R;.)

© adding a scalar multiple of one row to another. (If row j of A
is replaced by itself plus « times row j of A, the notation is
R+ OéRj — R;.)
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2.3. Elementary Row Operations

If B € Mnn(R) is the result of applying a sequence of EROs to
a given matrix A € Mp »(R), then B is said to be row
equivalent to A.
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2.3. Elementary Row Operations

If B € Mnn(R) is the result of applying a sequence of EROs to
a given matrix A € Mp »(R), then B is said to be row
equivalent to A.

Theorem 2.20: Every ERO can be ‘undone’ by another ERO.
Every sequence of EROs can be ‘undone’ by a sequence of
EROs.
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2.3. Elementary Row Operations

If B € Mnn(R) is the result of applying a sequence of EROs to
a given matrix A € Mp »(R), then B is said to be row
equivalent to A.

Theorem 2.20: Every ERO can be ‘undone’ by another ERO.
Every sequence of EROs can be ‘undone’ by a sequence of
EROs.

Theorem 2.21: Let M = (A\E) be an augmented matrix
corresponding to a linear system of equations AX = b, and let e
be an ERO. Then the solution set of the linear system
corresponding to the augmented matrix e(M) is identical to the
solution set of the linear system corresponding to M.
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2.3. Elementary Row Operations

If B € Mnn(R) is the result of applying a sequence of EROs to
a given matrix A € Mp »(R), then B is said to be row
equivalent to A.

Theorem 2.20: Every ERO can be ‘undone’ by another ERO.
Every sequence of EROs can be ‘undone’ by a sequence of
EROs.

Theorem 2.21: Let M = (A\E) be an augmented matrix
corresponding to a linear system of equations AX = b, and let e
be an ERO. Then the solution set of the linear system
corresponding to the augmented matrix e(M) is identical to the
solution set of the linear system corresponding to M.

Corollary 2.22: Linear systems that have row equivalent
augmented matrices have identical solution spaces.

Math 231 Section 2.2 and 2.3



